
THE PROBLEM OF THE ELECTRIC FIELD OF AN 

ELECTRODE WITH A PRE-ELECTRODE POTENTIAL 

DROP IN A MEDIUM WITH TENSOR CONDUCTIVITY 

Y u .  P .  E r e c t s  

We invest igate  the nonl inear  cur ren t  dis t r ibut ion in an e lec t rode  of finite d imensions  with 
a p r e - e l e c t r o d e  l aye r  in which the potential  local ly  depends on the cur ren t  density.  The 
e lec t rode  is  in contact  with a med ium of anisot ropic  conductivity caused by the Hall effect .  
The p rob l em  is reduced  to the solution of a nonl inear  in tegrodif ferent ia l  equation. It  is 
shown that the s t ruc tu re  of the field is  de te rmined  by the Hall p a r a m e t e r  wT and the f o r m  
of the v o l t - a m p e r e  cha r ac t e r i s t i c  in the p r e - e l e c t r o d e  l aye r .  

F r o m  theore t ica l  cons idera t ions  based on idealized assumpt ions  about the p r o p e r t i e s  of conductors ,  
d ie lec t r i c s ,  and the media  surrounding them,  the cu r ren t  dis t r ibut ion in e l ec t rodes  of finite d imensions  be -  
comes  significantly nonuniform with s ingular i t ies  at the end points.  This  nonuniformity  in the cur ren t ,  as  
a l ready  r e m a r k e d  on severa l  occas ions ,  is  amplif ied in media  in which the Hall effect  appea r s .  At the 
p resen t  t ime all the fundamental  re la t ionships  have been obtained in the approx imate  theory  of t h r e e - d i m e n -  
sional f ields in the flows of ionized gases  and in semiconduc tors .  The consequences  which have been de-  
duced f r o m  theory  have been conf i rmed by exper imenta l  ver i f ica t ion  [1, 2 ]. 

However ,  in specif ic  c a s e s ,  in compar ing  theore t ica l  calculat ions with expe r imen ta l  r e su l t s ,  there  
a re  d ivergences  indicating l imi ta t ions  in the application of the approximate  theory  [3]. I t  may  be r e m a r k e d  
that there  a re  m o r e  impor tan t  physical  phenomena which a re  not accounted for  in the or iginal  equations 
and not re f lec ted  in the boundary conditions of l inear  theory  p r o b l e m s ,  but which, evidently have a s ignif i -  
cant effect  on the format ion  of the field. These  phenomena include the nonl inear  conductivity of the medium 
in s t rong e lec t r i c  f ields,  which is obse rved ,  for  example ,  in an unbalanced p l a s m a  and in semiconduc tors  
with "hot e l ec t rodes , "  and a lso  contact  phenomena at the boundary of he te rogeneous  media .  To take ac -  
count of these new fac to r s ,  defining the nonl inear  p r o p e r t i e s  of f ields,  as a rule  makes  the solution of the 
boundary value p r o b l e m s  e x t r e m e l y  compl ica ted.  Never the less ,  it is  n e c e s s a r y  for  an ana lys i s  of the p r o c -  
e s s e s .  

1. Within the f r a m e w o r k  of the phenomenological  theory  of a continuous med ium we cons ider  the e f -  
fect of a potential  drop in the p r e - e l e c t r o d e  l aye r  on the cur ren t  distr ibution in an e lec t rode  adjacent  to the 
flow of an anisot ropie  conducting p l a s m a .  

We use  the theore t ica l  descr ip t ion  of the phenomena in the p r e - e l e c t r o d e  l aye r  p roposed  by Lyubimov 
and Vatazhin and used by them to compute,  in l inear  approximat ion,  the two-dimensional  f ields in magne to -  
gasdynamic  channels with s c a l a r  conducting flows [4, 5]. In this theory  two fundamental  assumpt ions  a re  
made:  

1) The thickness  of the l a y e r  is smal l  by compar i son  with a typical  length in the p rob lem.  

2) The potential  drop in the l aye r ,  ~0. , local ly  depends on the no rma l  component  of the cu r ren t .  

The f o r m  of the function r  is  defined by the phys icochemica l  p r o p e r t i e s  of the p l a sma ,  the m a t e r i a l  
of the e lec t rode ,  and is es tabl i shed by theore t ica l  calculat ions or  taken f r o m  exper imen t s .  In the la rge  the 
p r e - e l e c t r o d e  p r o c e s s e s  r e l a t e  to the sur face  of the e lec t rode and a re  taken into account in the effective 
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boundary conditions go = go0 + go, (in), where  go0 is  the actual  potential  of the e lec t rode .  In o ther  words ,  
the no rma l  component  of the cu r ren t  densi ty  v e c t o r  at the su r face  matches  some additional potential  due 
to the pure ly  local value of the field and the p r ede t e rmined  boundary p r o p e r t i e s  of the p l a sma  and the e l ec -  
t rode sur face .  

We a s s u m e  that the e lec t rode  of finite d imensions  a b  = 2 l ,  - l  -< x -~ l fo r  y = 0 (the remain ing  pa r t  
of the x axis  is  a d ie lect r ic)  is  in contact  with a two-dimensional  flow of an incompress ib l e  an iso t ropic  
conducting med i um  v [u (x, y), v(x,  y), 0] fi l l ing the lower  ha l f -p lane .  The externa l  magnet ic  field H(0,0,  H z) 
is  a s sumed  to be eve rywhe re  homogeneous  and to cons ide rab ly  exceed the in t r ins ic  field of the cu r r en t s  to 
be de te rmined ,  the effect  of the l a t t e r  f ield being ignored.  

The fundamental  equations of the theory  of the e l ec t r i c  field in this case  

Oy (1.1) 

01~: Oiv = 0 [ %cx (H) = ~vv (g), for elec~om 
"o~ + ~ /%y (g) - - %~ (~/), %~ (H) > o  ) Ou Ov \ + W = 0 %~ (n) < o 

have to be solved with the boundary  conditions 

(P----%+%(]~) - - l < ~ , < ~  for v = 0  

/v (x )=O I:el>z for v=0 ,  j ~ O  for (~,v)~,,o 

f ] v ( x , O )  d x = I ,  v = 0  for y = 0  

(1.2) 

In the above we have used commonly  accepted  notation.  

In the boundary  conditions we have a s sumed  that ~ .  0y) and the total  cu r r en t  I pass ing  through the 
e lec t rode  a r e  given.  Other  e l ec t rodes  through which the cu r ren t  is c losed a r e  a s sumed  to be infinitely 
dis tant .  The components  of the e l ec t r i ca l  conductivity t enso r  (rxx, ~xy  in (1.1) depend only on the m a g -  
netic field.  

In (1.1) we can introduce the complex  cur ren t  which can be put in the f o r m  of a Cauchy type integral  
l . 

i I lx (x) dx 
] (z) = & (x, v) - i j ,  (z, y) = ~ -  ~ _ ~ (~ = �9 + iv) 

--I 

( - - l < z < l ,  I m  z < 0 )  

This  sa t i s f i e s  the boundary conditions (1.2) and, for  l a rge  ]z , has  the expansion 

(i .3) 

I l 

] (z) ~ ~ ] ,  (x) dx - T . . . . .  ~-';. 

We dif ferent ia te  the f i r s t  boundary condition of (1.2) with r e spec t  to x 

d~p (z) _ d% (/v) d/v (X) _ o (-- Z < z < Z y = o) 
dx d/y dx -- (i.5) 

and wri te  (1.5), using the f i r s t  two equations of (1.1), as  

( H ) / y  (x) + & (5) + ~ (H) F "  " % (~) (iP (]v) T = O, F (]~) - -  d% (1.6) 
d~ u 

Here  the e lec t r i ca l  conductivi ty c~(I~ and the Hall p a r a m e t e r  fi (H) in the magnet ic  field a r e  defined 
by the equations 
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%. (H) + %~ (H) %y (H) 
( H ) =  G (H) B ( H ) =  ' H [%~ (H) + %~ (H)I (1.7) 

(H) = ~ (H) R (H) H 

If  we subst i tu te  the boundary  value  of  the in tegra l  (1.3) in a b  f o r  jx(X) in (1.6) we obtain a non l inea r  
s ingu la r  in t eg rod i f fe ren t i a l  equat ion fo r  the n o r m a l  component  of the c u r r e n t  dens i ty  v e c t o r  at the e l ec t rode  

l 
t_.. ~ i v (t) dt d/v (x) (H) (H) + ,, ~ :~x + ~ (H) F (iv) ----Q3-- = 0 (-- z < x, t < 0 (1.8) 

- - l  

where  /9 and cr a r e  cons tan t  f o r  f ixed H. The p r e - e l e c t r o d e  phenomena  in (1.8) c o r r e s p o n d  to the th i rd  
t e r m  with coeff ic ient  F(jy) = d ( p , / d j y ,  the f o r m  of which spec i f i e s  the v o l t - a m p e r e  c h a r a c t e r i s t i c  (p, (jy). 

2. We have not been able to c o n s t r u c t  ana ly t ic  solut ions  fo r  Eq. (1.8). However ,  the p r o p e r t i e s  of  
the f ie lds  d e s c r i b e d  by it can be es tab l i shed  by ana lyz ing  p a r t i c u l a r  solut ions  which a r e  obtained by nu-  
m e r i c a l  methods .  

F i r s t  we note the case  when the potent ia l  in the p r e - e l e c t r o d e  l a y e r  is independent  of the c u r r e n t ,  
i . e . ,  when(p.  = cons t ,  F = 0. Then Eq. (1.8) b e c o m e s  a l i nea r  s ingu la r  in t eg ra l  equat ion with a c losed  con-  
t ou r  of in tegra t ion  and i ts  solut ion,  obtained by solving the app rop r i a t e  R iemann  boundary  value p r o b l e m ,  
has  the f o r m  [6, 7 ] 

(H) X (l + x)-V~-, (l - -  z)-V,+. 
1. ( z ) =  V i  + t~ ~ (H) 

- -  I (l + x)-V~-~ (l - -  x)-V,§ 
iv (z) - V t + ~ (H) 

e = ~-1 arc tg ~ (0 ~ s < %) 

(--I< x<l) 

(2.1) 

i .e . ,  is  the f a m i l i a r  solut ion of  the p r o b l e m  of the c u r r e n t  d i s t r ibu t ion  in an ideal  e l ec t rode  when the e l e c -  
t r i c a l  conduct iv i ty  of the su r round ing  med ium is an i so t rop i c .  

Turning  to the n u m e r i c a l  solut ion of Eq. (1.7), we in t eg ra te  it onee 

x Z Jy 

( H ) .  Jv (x) dx --  ~ Jv (~) In I t - -  x I dt + ~ (H) F (Jr) dj~= C = r (2.2) 
0 - - l  0 

and assume that the volt-ampere characteristic is given by the function (p �9 = ajy + b, where a and b are 

constants (F = a). We can reduce Eq. (2.2) to a system of algebraic equations by the method of finite dif- 

ferences, which we can write in nondimensional form (j0 = jyl/I, x ~ = x/l ; the superscripts are omitted 

from the equations which follow) 

p 2~ 

i ,~ ] {2k -- 2p + i In I 2k -- 2p + i I 2k-  2p-  l 

p = l  
'~n 

• in 12k -- 2p -- t I + 7]~ = C, -~ ~ ]~ = 2 (~" = a~ (H)) 
2 n  

k = l  

(2.3) 
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This las t  equation co r re sponds  to the in tegra l  condition 

l 

~-z iv (x) dx = I 

in (1.2) and it mus t  be included in the s y s t e m  for  {2.3) to be de te rmina te ,  
s ince a f t e r  in tegra t ing (1.8), the r ight  side of (2.2) contains the unknown 
constant  C. At the points  

2n , - -  + ~ ~ - s  ( p , ~ = t  . . . . .  2~,) (2.4) 

Eqs .  (2.3) exact ly  sa t i s fy  Eq. (1.8) o r  the equivalent Eq. (2.2). 

The r e s u l t s  of computat ions  on a compu te r  for  three  va lues  of the 
Hall p a r a m e t e r  fl (H) = 0, 1, 3 and four  va lues  of the nondimensional  
p a r a m e t e r  ~' = a cr(H) = 0 ,0 .1 ,  1, 10 (a > 0) a re  given in F igs .  1, 2, and 
3. It follows f rom the f o r m  of the cu rves  that there  is a common p rop -  
e r t y  fo r  all  va lues  of fi - the dis t r ibut ion of the no rma l  component  of the 
cu r r en t  densi ty  along the length of the e lec t rode  f la t tens  out as  y in-  
c r e a s e s .  Th is  is  explained as  follows. At points where  the cu r r en t  
gradient  is  nonzero  (d jy /dx  ~ 0), l a rge  va lues  of jy  in the p r e - e l e c t r o d e  
l a y e r  co r respond  to l a rge  va lues  of the potent ia l  ~ , ,  which l imi t s  the in-  
c r e a s e  in jy,  since we have a s sumed  that the v o l t - a m p e r e  c h a r a c t e r i s t i c  
i n c r e a s e s .  As a r e su l t  of the compat ib i l i ty  between e ,  and jy the c u r -  
rent  dis t r ibut ion at the e lec t rode  is  r eo rgan ized ,  jy d e c r e a s e s  when ~ �9 
is  l a rge  and, converse ly ,  i n c r e a s e s  where  ~ .  is  smal l ;  the inhomogenei ty  
in jy(x) d e c r e a s e s  and in gene ra l  van ishes  as  T ~  oo (d jy /dx-*-0) .  This  
p r o p e r t y  of the field occurs  to a l e s s e r  extent as fi i n c r e a s e s  and ~ de-  
c r e a s e s ,  the l a t t e r  because  V = a ~  (a = const) .  

The cu r r en t  dis t r ibut ion is  quite different  for  falling v o l t - a m p e r e  
c h a r a c t e r i s t i c  (a < 0). Here  i nc rea se  in jy  leads  to a reduct ion in ~ ,  

and the nonunfformity  of cu r ren t  flow at the e lec t rode  mus t  i n c r e a s e .  However ,  it i s  difficult to p red ic t  the 
f o r m  of the function jy(X). In this case  the solution of Eqs.  (2.3) depends on the re la t ions  between fl, a ,  and 

and is  sens i t ive  to changes  in them,  smal l  va r i a t ions  in the coeff ic ients  of Eq. (1.8) leading to l a rge  
changes in the cu r ren t  densi ty  which can become  of va r i ab le  sign at the e lec t rode .  In this sense  we can 
d i scuss  the ins tabi l i ty  of the dis t r ibut ion of jy(X). As an example ,  Fig.  4 shows the r e su l t s  of solving the 
equation for  three  va lues  of fi (H) = 0, 1, 3 and T = - 0 . 1 .  The graphs  show that because  of the change in the 
sign of jy(X) there  a re  cur ren t  vo r t i ce s  n e a r  the e lec t rode ,  the f o r m  of which s t rongly  depends on the size 
of the external  magnet ic  field or ,  m o r e  p r ec i s e ly ,  on the value of the Hall p a r a m e t e r  fi (H). 

If  the v o l t - a m p e r e  c h a r a c t e r i s t i c  q~, (]y) has  increas ing  and decreas ing  p a r t s  (for example ,  has  N- 
shaped fo rm;  Fig.  5) the cu r r en t  dis t r ibut ion has  p r o p e r t i e s  c h a r a c t e r i s t i c  of the two c a s e s  d i scussed  
above for  a > 0 and a < 0. 

It  is  poss ib le  that the o c c u r r e n c e  of falling p a r t s  in the v o l t - a m p e r e  c h a r a c t e r i s t i c  of the p r e - e l e c -  
t rode l aye r  is  a s soc ia t ed  with the fo rmat ion  of a r c s  and pa tches  which have been obse rved  expe r imen ta l ly  
at the e lec t rode ,  and a lso  with the appearance  of cu r r en t  and vol tage f luctuations in the load. 
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